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The following problem is considered inthis work. There are two hard spheres immersed 
in an ideal, incompressible fluid, unbounded from outside. Initially, the fluid and the 
spheres are at rest with regard to an inertial system of orthogonal coordinates x, y, zo 
Subsequently, one of the spheres executes given periodical vibrations and its center moves 
along the y-axis. The center of the other sphere, identical with its center of mass, is 
located in the plane z = 0 that contains the y-axis and the point where its center was 
located at the initial time. Only the fluid pressure forces act on the second sphere (the 
z-component of the total force acting on the second sphere is equal to zero). The fluid 
flow is potential. The problem is to determine the motion of the second sphere. Under 
the assumption that the initial distance between the centers of the spheres is large com- 
pared to their radii and to the largest displacement of the center of the first sphere from 
its initial position, it is shown that the second sphere moves away from the first sphere 
when the average density of the second sphere is smaller than the fluid density, and moves 
toward the first sphere when its average density is larger than the fluid density. 

Let t denote time; T is the period of vibrations of the center of the first sphere; 
H = (0, H, 0) is the position vector of the center of the first sphere; 

(A0, A m , B mare constant); R : (X, Y, 0) is the position vector of the center of the 
second sphere; X0, Y0 are the values of X, Y for t = 0; ~ is the potential of the flow 
velocity of the fluid; ml, m 2 are the masses of the spheres; $I, $2 are their surfaces; 
D is the external unit normal to the surface; and Pfl is the fluid density. 

The coordinates X, Y, and the potential ~ satisfy the following equations and condi- 
tions 

d aE OE 
~ -  - -  ~F~- = 0;. ( i )  

d O E  O~=O; (2) 
dt OF aY 

X = Xo, Y = Yo, X : O, Y .= 0 at t ----O; ( 3 )  

A.  = o; (4) 

�9 n . v ~  = n . I t  on 81, ( 5 )  

n - V r  " - ---- n . R  o n  $2; (6) 

v * - + 6  fo, x~ + v ~ + ~ co, (7) 
where 

E = [f miH 2 + -~ m S (x + ~'~) + ~ pfl , (V@) ~ dx dg dz 
(8) 

is the sum of kinetic energies of the spheres and the fluid (~ is the region occupied by 
the fluid). The coordinate H satisfies the conditions 
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H = 0 ,  I / = 0  at t = 0 .  ( 9 )  

Eqs .  ( 1 ) ,  ( 2 )  a r e  t h e  L a g r a n g e  e q u a t i o n s  [ 1 - 3 ] ,  a l s o  c a l l e d  t h e  T h o m s o n - T a i t  e q u a t i o n s  [ 3 ] .  

It is now assumed that the initial distance L0 between the centers of the spheres is 
large compared to their radii a I, a 2 and the largest value of [H I . The number of ~ = al/L 
is employed as a small parameter. 

The problem of potential flow of an ideal, incompressible fluid, caused by a given 
motion of two hard spheres immersed in it is discussed in [4]. Employing the method of 
calculation of the flow velocity potential introduced in [4], we find the solution of the 
problem (4), (7) satisfying the conditions (5), (6) that is accurate in the quantities 

�9 . 

proportional to H, X, Y and small compared to ~7H, ~Tx, a7Y, respectively. Using this 
solution of the problem (4)-(7) and Eq. (8) we obtain an approximate expression for E 

' p V(A.j , + + A. fd" + Axx + (lOO 

4 ual; Ann = m, a~ 3 + (-- ,)m o~m+ehmL~+ e om X ~ + 4Y'; 

,l 
9 X ~a ( ~  l)m+t _m§ 0 m Y 

A u x = T ~  , =  '~ ' - ' 0  - -  - - "  Lo ra=o ml Oy m R a ' 

4 
3 '~__~ m O .  X 2 (-- t) _m+a~mrm+a ~ 2Y ~ 

A ~  = -~ ~ ~ "~ ~o Oy~ R~ ; 

3 I 
Axx = ~ h +  ~ 3 % ~ (-- ~)~ ~~+~k~r~+, 0 ~ 4X ~ + Yz 

T +  T ' 7  ~_~ ~ . . . . .  o -~ .m=0 . OYm Rs ' 

~ ]  m " y 9 a~ X 1 ( - -1 )  _m+6Lmrra+7 0 m 
A x r =  4 a~ L o ~ = o ~  '~ ,~ 1-'o oY~ n s ,  

Psph i " 3 aa <~ (--:l)m m+a, mrm+6 "0 m X'  + 4 r  ~ 
= 711 , ,  o r "  

where  h = H / a ! ,  R = /X = + Y=, Psph = m2/V i s  t h e  a v e r a g e  d e n s i t y  o f  t h e  s e c o n d  s p h e r e .  
Substituting expression (i0) for E into (i), (2) we find the following approximate equations 
for X, Y: 

4 
- - - -  X ' ~  (---,1) ra+l _,~z, ra+t am 

�9 ra+4 a ,~. T.m+4 Y 
d ~ X +~Z~. ~ ~  ~ dt~ ~o .Oy~R5 + d'~2 LO " m=O 

t s . {dh~L7  X(X~+5Y 2) 

4 
d ~ Y t czra+a T.m+a - -  2Y 2 
d ~ L o  +T ~ ~ (-~)~ d~a~__ +~ 0 '~ X" - - - -  d,n.+ ~'yi", " dt~ ~o oY" R'~" + 

r '  
+ 2ask \~] ~o~' i~  + Q r  = 0,~ 

( l l )  

where �9 = t/T; X = 90fl/[4(0sph+ Ofl/2)]; 

2~, [ (  9 ~d2X A a l l Y ,  3 fdh_~zr9 0~ Xl-'~ 4Yl  
Qx = ~oo 2Axx - -  2"~1 ~ + ~ X Y  ~ "l- "~ ~9h ~'~] "-'o OXOY R 8 

OAxx dh dX OAxy dk dY . OAxx (dX~  ~ a A x x  d X d Y  
+ 2  ah aT d~ + - ~ ' ~  d ~ . ' t - ~  l ,~ ] + 2  or d~ dr + 

{OAxY OAyy~ (dY~'] 
+ ~ ~ ~ - / ~ ]  j; 

- - - - +  

0 ~ X ~ -I- 4 Y  2 

~-~ RT--- + 
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_ _  OAxy dhdX OAyy dhdY" (OAxy OAXX'~ (dX~ t 

OAyy dX dr aArr ( ~_.Y'~'] 
+ 2 .-g-~ "~"d'i + OY \dv  l j" 

Now we apply the method of averaging [5, 6]. 
by the equations 

x__ = ( -  1)" r (~  -t ~)~/'~": 
Lo ~ + %~1 ~ (m + t)------F o~ ,~ _ , 

0 m 

= ~ + ~ "'~=o (~ + ~)~ ~t ~ (q~ + ~D ~/~ ' 

Let N, ~ be variables related to X, Y 

(12) 

% ==-~dN/dz, ~ = ~-~d~/dz. (13) 

According to (8), (9), (12), (13) q, ~, X, ~ satisfy the conditions 

n = n o , ~ = ~ o , x = o , ~ = o  ~t ~=o~  (14) 

where ~0 = X0/L0; $0 = Y0/L0 �9 Using (12), (13) we bring (ii) to the system of equation s 
for N, ~, X, ~ in normal form. Expanding the right-hand sides of these equations in powers 
of a and keeping only the largest terms of the expansion, we obtain the following system of 
equations in the standard form 

d~lldz = * 7 %, d~/d'~ = r162 

{[( ] -, o 

a, x ) +~Xh~  o~o : f ~ / x N + - N /  7--i,  d'~ d'~ 

(is) 

where o = /~2 + $2. 
plicitly entering the formula. As a result we obtain 

dql&~ = r d~tdx = r 

dx/dT = --a4ukk~(~l  ~ -J- 5~)/ax~ 

where M --=(Psph-- Pf~/(Psph -~ ~f[/2); k =  ~ ~ re2 (A~m + B~m). 
al m=l 

We carry out the average of (15) over the dimensionless time �9 ex- 

(16) 

In accordance with (14), (16) we have 

d2~/d~ 2 = --='~kk~(n 2 + 5~)/~I~ 

d ~ U d ~  = --4~Sxkk~3/alo; 

It follows from (17), (18) that 

=~0, ~=~0 ~r x=0. 

Let K ~ 0. When Do = 0, ~o = !l and Do 
(18) is determined by the equations 

~ 0 .  

(17) 

(18) 

(19) 

= ! I, ~0 = 0 the solution of the problem (17), 

3 = 0 ,  (zo) 
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Js for u < O ,  io-----t 

i ands> O, ~o=--I," 
3/~ '~'~ = l -  s for ~ < O, ~o = - i 

~o (u-O - l j  (andx > O, ~o ---- 1; 

~l Is for n < O ~  r lo- - t  

= | - - S  for x<O,  %--"'--1 
% ~ t ( , , , ' -  0 [andx > O, ~o - -  t,,- (21) 

where s = ~4~T~. 

For values of s small compared with unity we find the following approximate solutions 
of the problem (17), (18): 

] I 
4~0 ~ ) s~J '; (22)  ~ =  r to [ , -  f ~ '  + 

Using (22) we obtain an approximate expression for o 

i ~ ( i  br 3~o~)s 2. (23) o = i  ---•12 

F i g u r e s  1-3 show d iagrams  o f  t h e  dependence  of  q, ~, o on s ,  o b t a i n e d  by means o f  numer i -  
c a l  s o l u t i o n  o f  t h e  problems (17 ) ,  ( 1 8 ) .  The c u r v e s  1-5 c o r r e s p o n d  to  x < 0 ,  ~o = co s(n~/i2), 
~ o ~  S in (n~]12) (n=  i ,  2 . . . . . . .  5 ) ,and t h e  c u r v e s  6-10 c o r r e s p o n d  t o  K > 0,  q0 = c o s ( n ~ / 1 2 ) ,  ~0 = 
S i n ( n ~ / 1 2 )  (n = l ,  2,  . . . ,  5 ) .  Acco rd ing  to  ( 1 7 ) ,  (18)  t h e  change  o f  s i g n s  o f  q0,~0 l e a d s  
t o  t h e  change of  s i g n s  o f  q,  ~. T h e r e f o r e  t h e  problem ( 1 7 ) ,  (18)  was s o l v e d  n u m e r i c a l l y  
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only for positive signs of q0, G0. We note that the approximate solution (22) agrees with 
(20), (21) and with the results of numerical solution of (17), (18) when s ~ 0.3. 

Using (12) we obtain the following approximate expressions for X, Y and the distance 
L between the centers of the spheres 

X = Lo~, Y = Log; ( 2 4 )  

L = Lo6. ( 2 5 )  

The data shown in Figs. i, 2 and Eqs. (19)-(22), (24) approximately determine the dependence 
of X and Y on t. According to Eqs. (20), (21), (23), (25) and to the data shown in Fig. 3, 
when K < 0 L increases, and for ~ > 0 L decreases with increasing t. Thus the second sphere 
moves away from the first one when Psph < Pf, and moves toward it when Psph > Pfl" 
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